Finden Sie schnell additive fertigung kunststoff für Ihr Unternehmen: 38 Ergebnisse

Kunststoffbearbeitung

Kunststoffbearbeitung

Kunststoffbearbeitung
Polytetrafluorethylen (PTFE)

Polytetrafluorethylen (PTFE)

Acrylglasplatten(PMMA) Polycarbonat Platten(PC) PTFE-Teflon Platten Baukunststoffe Kompaktplatten Stegplatten PE1000 Platten Gummiplatten Gummizuschnitte Dichtungen Stanzteile
Technische Kunststoffe, Platten aus POM-C , PA 6 G, PA 6 GF30, PEEK, PTFE, PE1000

Technische Kunststoffe, Platten aus POM-C , PA 6 G, PA 6 GF30, PEEK, PTFE, PE1000

TECARAN(ABS), TECAPRO MT(PP), TECAMID (11/12), TECARIM(PA 6 C), TECANYL(PPE), TECAFORM AH(POM-C), TECAMID 6/66(PA 6/66), TECAPET(PET), TECAFINE(PE), TECAFORM AD(POM-H), TECAST(PA 6 C), TECADUR(PET), T Kunststoffbearbeitung, Kunststoffhandel, CNC-Fertigteile CNC-Drehteile, CNC-Frästeile aus POM-C, PA 6 G, PA 6.6, PE1000, S-grün, PTFE, PEEK, PVC, PS,
Isolationsfilm silikonbeschichtet TFO-M-SI-PI

Isolationsfilm silikonbeschichtet TFO-M-SI-PI

thermisch leitfähige Folie aus einem elektrisch isolierenden Polyimid Trägerfilm mit wärmeleitenden Silikonbeschichtungen auf beiden Seiten zur thermischen Anbindung von elektronischen Bauelementen. Durch die spezielle Formulierung und Füllung des Silikons mit Keramikfüllstoffen ergibt sich eine hohe Leitfähigkeit. Unter Druck stellt sich ein sehr geringer thermischer Gesamtwiderstand ein. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Dielektrisch weist das Material eine sehr hohe Durchschlagsfestigkeit auf. Der Trägerfilm sorgt für höchste mechanische Stabilität und eine einfache Handhabung. • Sehr guter thermischer Kontakt • Sehr hohe dielektrische Durchschlagsfestigkeit • Hohe mechanische Stabilität durch Trägerfilm • Extrem alterungs-/chemisch beständig • Rückstandslose Entfernung nach Anwendung
Kunststoffteile für den Maschinenbau

Kunststoffteile für den Maschinenbau

Acrylglasplatten(PMMA) Polycarbonat Platten(PC) PTFE-Teflon Platten Baukunststoffe Kompaktplatten Stegplatten PE1000 Platten Gummiplatten Gummizuschnitte Dichtungen Stanzteile
Multi-Jet-Fusion (MJF-Verfahren)

Multi-Jet-Fusion (MJF-Verfahren)

Das Multi-Jet Fusion-Verfahren findet Anwendung in diversen Bereichen. Aufgrund der Schnelligkeit und Genauigkeit des Verfahrens wird es oft in der Prototypenentwicklung eingesetzt. Hierdurch können die Unternehmen ihre Produktideen schnell visualisieren und die Funktionen überprüfen, bevor höchst genaue Bauteile in der Serienfertigung produziert werden. Durch den Vorteil des Verfahrens, das es Modelle mit hoher Komplexität herstellen kann, wird es zur Herstellung von Präsentationsmodellen verwendet. Grund hierfür ist die Herstellung des Bauteils mit feinen Details, Texturen und Farben. Hierdurch können beispielweise Architekten, Designer und Konstrukteure realistische Modelle erstellen, um ihrer Ideen visuell zu präsentieren. Auch in der Medizintechnik wird das Polyjet-Verfahren angewendet, um maßgeschneiderte Prothesen, Modelle für chirurgische Versuchsplanungen und Zahnmodelle herzustellen. Das Multi-Jet Fusion-Verfahren wird auch in der Luft- und Raumfahrtindustrie sowie der Automobil­industrie verwendet, um Prototypen und Modelle von Flugzeug- und Raumfahrzeug- sowie Automobilteilen herzustellen. Es ermöglicht es den Ingenieuren, komplexe Geometrien und Strukturen zu testen und zu optimieren. Für das Herstellen von Bauteilen mithilfe des Polyjetverfahren werden UV-härtbare Photopolymere als Druckmaterial verwendet. Dieses Material ist flüssig und wird mithilfe von UV-Licht ausgehärtet. Die Auswahl an Druckmaterialien für das Polyjet-Verfahren ist vielfältig und umfasst sowohl harte als auch weiche Materialien. Bei der delbramed GmbH kommen folgende Materialien zum Einsatz: Standardmaterial: Dieses Material bietet eine gute Festigkeit, Härte und Detailgenauigkeit. Es eignet sich gut für die Prototypenentwicklung, das Modellieren von Gehäusen und Bauteilen sowie für die Herstellung von Funktionsmustern und Serienteilen. Flexibles Material: Dieses Material weist eine gewissen Flexibilität und Dehnbarkeit auf. Hier sind die Shore-Härte A35 und A65 im Einsatz. Dieses Material ist nützlich, wenn Teile mit gummiartigen Eigenschaften benötigt werden, wie zum Beispiel für Dichtungen, Gummifedern oder Griffe. Hitzebeständiges Material: Dieses Material weist eine hohe Hitzebeständigkeit auf und kann Temperaturen von bis zu 100°C standhalten. Es eignet sich für die Anwendung, bei der hohe Temperaturen auftreten, wie beispielsweise in der Automobilindustrie, Medizintechnik oder dem Maschinenbau.
Aluminiumoxid (Al2O3), Aluminiumoxid-Keramik

Aluminiumoxid (Al2O3), Aluminiumoxid-Keramik

Aluminiumoxid, auch bekannt als Al2O3, ist ein preisgünstiger Allrounder in der Welt der technischen Keramik. Es nimmt eine führende Stellung ein, sowohl in seiner Verbreitung als auch in der Anwendungstiefe. Die Gründe für seine Beliebtheit sind die hervorragenden Werkstoffeigenschaften, die einfache Prozesshandhabung, die weltweite Verfügbarkeit und der günstige Preis. Aluminiumoxid ist vielseitig einsetzbar und bietet eine ausgezeichnete Kombination aus Härte, Festigkeit und Temperaturbeständigkeit, was es zu einem bevorzugten Material für eine Vielzahl von industriellen Anwendungen macht. In der technischen Keramik wird Aluminiumoxid aufgrund seiner hervorragenden mechanischen Eigenschaften und seiner chemischen Beständigkeit geschätzt. Es ist ideal für Anwendungen, die hohe Abriebfestigkeit und Korrosionsbeständigkeit erfordern. Darüber hinaus ist es ein bevorzugtes Material für die Herstellung von Verschleißteilen, Dichtungen und Isolatoren. Die breite Verfügbarkeit und die kostengünstige Produktion machen Aluminiumoxid zu einer attraktiven Wahl für Unternehmen, die nach zuverlässigen und leistungsstarken Materialien suchen.
Zuschnitte aus PTFE, PEEK, POM, PA, PE1000, PVC, PMMA, PC, PVDF

Zuschnitte aus PTFE, PEEK, POM, PA, PE1000, PVC, PMMA, PC, PVDF

Zuschnitte aus POM, PA, PE1000, PEEK, PTFE, PVC nach Maß Wir fertigen Ihre Produkte schnell, effizient und kostengünstig.